Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Infect Dis ; 22(1): 922, 2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2162305

ABSTRACT

BACKGROUND: From March 2020 through August 2021, 97,762 hospital-onset SARS-CoV-2 infections were detected in English hospitals. Resulting excess length of stay (LoS) created a potentially substantial health and economic burden for patients and the NHS, but we are currently unaware of any published studies estimating this excess. METHODS: We implemented appropriate causal inference methods to determine the extent to which observed additional hospital stay is attributable to the infection rather than the characteristics of the patients. Hospital admissions records were linked to SARS-CoV-2 test data to establish the study population (7.5 million) of all non-COVID-19 admissions to English hospitals from 1st March 2020 to 31st August 2021 with a stay of at least two days. The excess LoS due to hospital-onset SARS-CoV-2 infection was estimated as the difference between the mean LoS observed and in the counterfactual where infections do not occur. We used inverse probability weighted Kaplan-Meier curves to estimate the mean survival time if all hospital-onset SARS-CoV-2 infections were to be prevented, the weights being based on the daily probability of acquiring an infection. The analysis was carried out for four time periods, reflecting phases of the pandemic differing with respect to overall case numbers, testing policies, vaccine rollout and prevalence of variants. RESULTS: The observed mean LoS of hospital-onset cases was higher than for non-COVID-19 hospital patients by 16, 20, 13 and 19 days over the four phases, respectively. However, when the causal inference approach was used to appropriately adjust for time to infection and confounding, the estimated mean excess LoS caused by hospital-onset SARS-CoV-2 was: 2.0 [95% confidence interval 1.8-2.2] days (Mar-Jun 2020), 1.4 [1.2-1.6] days (Sep-Dec 2020); 0.9 [0.7-1.1] days (Jan-Apr 2021); 1.5 [1.1-1.9] days (May-Aug 2021). CONCLUSIONS: Hospital-onset SARS-CoV-2 is associated with a small but notable excess LoS, equivalent to 130,000 bed days. The comparatively high LoS observed for hospital-onset COVID-19 patients is mostly explained by the timing of their infections relative to admission. Failing to account for confounding and time to infection leads to overestimates of additional length of stay and therefore overestimates costs of infections, leading to inaccurate evaluations of control strategies.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Length of Stay , SARS-CoV-2 , Pandemics , Hospitals
2.
BMC Infect Dis ; 22(1): 556, 2022 Jun 18.
Article in English | MEDLINE | ID: covidwho-1962756

ABSTRACT

BACKGROUND: SARS-CoV-2 is known to transmit in hospital settings, but the contribution of infections acquired in hospitals to the epidemic at a national scale is unknown. METHODS: We used comprehensive national English datasets to determine the number of COVID-19 patients with identified hospital-acquired infections (with symptom onset > 7 days after admission and before discharge) in acute English hospitals up to August 2020. As patients may leave the hospital prior to detection of infection or have rapid symptom onset, we combined measures of the length of stay and the incubation period distribution to estimate how many hospital-acquired infections may have been missed. We used simulations to estimate the total number (identified and unidentified) of symptomatic hospital-acquired infections, as well as infections due to onward community transmission from missed hospital-acquired infections, to 31st July 2020. RESULTS: In our dataset of hospitalised COVID-19 patients in acute English hospitals with a recorded symptom onset date (n = 65,028), 7% were classified as hospital-acquired. We estimated that only 30% (range across weeks and 200 simulations: 20-41%) of symptomatic hospital-acquired infections would be identified, with up to 15% (mean, 95% range over 200 simulations: 14.1-15.8%) of cases currently classified as community-acquired COVID-19 potentially linked to hospital transmission. We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900 (15,200-16,400) or 20.1% (19.2-20.7%) of all identified hospitalised COVID-19 cases. CONCLUSIONS: Transmission of SARS-CoV-2 to hospitalised patients likely caused approximately a fifth of identified cases of hospitalised COVID-19 in the "first wave" in England, but less than 1% of all infections in England. Using time to symptom onset from admission for inpatients as a detection method likely misses a substantial proportion (> 60%) of hospital-acquired infections.


Subject(s)
COVID-19 , Cross Infection , COVID-19/epidemiology , Cross Infection/epidemiology , Hospitalization , Hospitals , Humans , SARS-CoV-2
3.
Epidemiol Infect ; 150: e79, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1805520

ABSTRACT

Hand hygiene is a simple, low-cost intervention that may lead to substantial population-level effects in suppressing acute respiratory infection epidemics. However, quantification of the efficacy of hand hygiene on respiratory infection in the community is lacking. We searched PubMed for randomised controlled trials on the effect of hand hygiene for reducing acute respiratory infections in the community published before 11 March 2021. We performed a meta-regression analysis using a Bayesian mixed-effects model. A total of 105 publications were identified, out of which six studies reported hand hygiene frequencies. Four studies were performed in household settings and two were in schools. The average number of handwashing events per day ranged from one to eight in the control arms, and four to 17 in the intervention arms. We estimated that a single hand hygiene event is associated with a 3% (80% credible interval (-1% to 7%)) decrease in the daily probability of an acute respiratory infection. Three of these six studies were potentially at high risk of bias because the primary outcome depended on self-reporting of upper respiratory tract symptoms. Well-designed trials with an emphasis on monitoring hand hygiene adherence are needed to confirm these findings.


Subject(s)
Epidemics , Hand Hygiene , Respiratory Tract Infections , Bayes Theorem , Hand Disinfection , Humans , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control
4.
Infect Prev Pract ; 4(1): 100192, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1540723

ABSTRACT

Many infection prevention and control (IPC) interventions have been adopted by hospitals to limit nosocomial transmission of SARS-CoV-2. The aim of this systematic review is to identify evidence on the effectiveness of these interventions. We conducted a literature search of five databases (OVID MEDLINE, Embase, CENTRAL, COVID-19 Portfolio (pre-print), Web of Science). SWIFT ActiveScreener software was used to screen English titles and abstracts published between 1st January 2020 and 6th April 2021. Intervention studies, defined by Cochrane Effective Practice and Organisation of Care, that evaluated IPC interventions with an outcome of SARS-CoV-2 infection in either patients or healthcare workers were included. Personal protective equipment (PPE) was excluded as this intervention had been previously reviewed. Risks of bias were assessed using the Cochrane tool for randomised trials (RoB2) and non-randomized studies of interventions (ROBINS-I). From 23,156 screened articles, we identified seven articles that met the inclusion criteria, all of which evaluated interventions to prevent infections in healthcare workers and the majority of which were focused on effectiveness of prophylaxes. Due to heterogeneity in interventions, we did not conduct a meta-analysis. All agents used for prophylaxes have little to no evidence of effectiveness against SARS-CoV-2 infections. We did not find any studies evaluating the effectiveness of interventions including but not limited to screening, isolation and improved ventilation. There is limited evidence from interventional studies, excluding PPE, evaluating IPC measures for SARS-CoV-2. This review calls for urgent action to implement such studies to inform policies to protect our most vulnerable populations and healthcare workers.

5.
PLoS Med ; 18(10): e1003816, 2021 10.
Article in English | MEDLINE | ID: covidwho-1463303

ABSTRACT

BACKGROUND: Nosocomial spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been widely reported, but the transmission pathways among patients and healthcare workers (HCWs) are unclear. Identifying the risk factors and drivers for these nosocomial transmissions is critical for infection prevention and control interventions. The main aim of our study was to quantify the relative importance of different transmission pathways of SARS-CoV-2 in the hospital setting. METHODS AND FINDINGS: This is an observational cohort study using data from 4 teaching hospitals in Oxfordshire, United Kingdom, from January to October 2020. Associations between infectious SARS-CoV-2 individuals and infection risk were quantified using logistic, generalised additive and linear mixed models. Cases were classified as community- or hospital-acquired using likely incubation periods of 3 to 7 days. Of 66,184 patients who were hospitalised during the study period, 920 had a positive SARS-CoV-2 PCR test within the same period (1.4%). The mean age was 67.9 (±20.7) years, 49.2% were females, and 68.5% were from the white ethnic group. Out of these, 571 patients had their first positive PCR tests while hospitalised (62.1%), and 97 of these occurred at least 7 days after admission (10.5%). Among the 5,596 HCWs, 615 (11.0%) tested positive during the study period using PCR or serological tests. The mean age was 39.5 (±11.1) years, 78.9% were females, and 49.8% were nurses. For susceptible patients, 1 day in the same ward with another patient with hospital-acquired SARS-CoV-2 was associated with an additional 7.5 infections per 1,000 susceptible patients (95% credible interval (CrI) 5.5 to 9.5/1,000 susceptible patients/day) per day. Exposure to an infectious patient with community-acquired Coronavirus Disease 2019 (COVID-19) or to an infectious HCW was associated with substantially lower infection risks (2.0/1,000 susceptible patients/day, 95% CrI 1.6 to 2.2). As for HCW infections, exposure to an infectious patient with hospital-acquired SARS-CoV-2 or to an infectious HCW were both associated with an additional 0.8 infection per 1,000 susceptible HCWs per day (95% CrI 0.3 to 1.6 and 0.6 to 1.0, respectively). Exposure to an infectious patient with community-acquired SARS-CoV-2 was associated with less than half this risk (0.2/1,000 susceptible HCWs/day, 95% CrI 0.2 to 0.2). These assumptions were tested in sensitivity analysis, which showed broadly similar results. The main limitations were that the symptom onset dates and HCW absence days were not available. CONCLUSIONS: In this study, we observed that exposure to patients with hospital-acquired SARS-CoV-2 is associated with a substantial infection risk to both HCWs and other hospitalised patients. Infection control measures to limit nosocomial transmission must be optimised to protect both staff and patients from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Community-Acquired Infections , Cross Infection/epidemiology , Health Personnel , Hospitals , Infectious Disease Transmission, Patient-to-Professional , Infectious Disease Transmission, Professional-to-Patient , Adult , Aged , Aged, 80 and over , COVID-19/transmission , Cohort Studies , Female , Hospitalization , Hospitals/statistics & numerical data , Humans , Infection Control , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Infectious Disease Transmission, Professional-to-Patient/statistics & numerical data , Male , Middle Aged , Nurses , Risk Factors , SARS-CoV-2 , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL